CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level						
ADDITIONAL M	ATHEMATICS	4037/02				
Paper 2		October/November 2003				
Additional Materials:	Answer Booklet/Paper Graph paper Mathematical tables	2 hours				
Write your Centre number, ca Write in dark blue or black per You may use a soft pencil for	swer Booklet, follow the instruc andidate number and name on n on both sides of the paper.					
Give non-exact numerical ans in degrees, unless a different	parate Answer Booklet/Paper swers correct to 3 significant fi level of accuracy is specified i , fasten all your work securely	gures, or 1 decimal place in the case of angles n the question.				
The total number of marks for The use of an electronic calcu	n in brackets [] at the end of e this paper is 80. Ilator is expected, where appro for clear presentation in your	priate.				

This document consists of 6 printed pages and 2 blank pages.

UNIVERSITY of CAMBRIDGE Local Examinations Syndicate

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Binomial Theorem

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n},$$

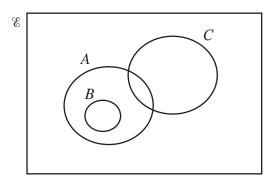
where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)! r!}$.

2. TRIGONOMETRY

Identities

$$sin2 A + cos2 A = 1.$$

$$sec2 A = 1 + tan2 A.$$

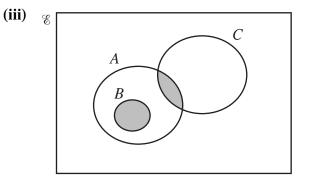

$$cosec2 A = 1 + cot2 A.$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A.$$
$$\Delta = \frac{1}{2}bc \sin A.$$

- 1 The line 4y = x + 11 intersects the curve $y^2 = 2x + 7$ at the points *A* and *B*. Find the coordinates of the mid-point of the line *AB*. [4]
- 2 Show that $\cos\theta\left(\frac{1}{1-\sin\theta}-\frac{1}{1+\sin\theta}\right)$ can be written in the form $k\tan\theta$ and find the value of k. [4]
- **3** Solve the equation $\log_2 x \log_4(x 4) = 2$.




The diagram shows a universal set \mathscr{C} and the three sets A, B and C.

(i) Copy the above diagram and shade the region representing $(A \cup C) \cap B'$.

For each of the diagrams below, express, in set notation, the set represented by the shaded area in terms of A, B and C.

(ii) g

[4]

[4]

- 5 Obtain
 - (i) the first 3 terms in the expansion, in descending powers of x, of $(3x 1)^5$, [3]
 - (ii) the coefficient of x^4 in the expansion of $(3x 1)^5(2x + 1)$. [2]
- 6 A particle travels in a straight line so that, t s after passing a fixed point A, its speed, $v \text{ ms}^{-1}$, is given by

$$v = 40(e^{-t} - 0.1).$$

[2]

[4]

The particle comes to instantaneous rest at *B*. Calculate the distance *AB*. [6]

7 Given
$$\mathbf{A} = \begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 2 & 1 \\ -2 & 3 \end{pmatrix}$, write down the inverse of \mathbf{A} and of \mathbf{B} . [3]

Hence find

- (i) the matrix C such that $2\mathbf{A}^{-1} + \mathbf{C} = \mathbf{B}$, [2]
- (ii) the matrix **D** such that $\mathbf{BD} = \mathbf{A}$.
- 8 A garden centre sells 10 different varieties of rose bush. A gardener wishes to buy 6 rose bushes, all of different varieties.
 - (i) Calculate the number of ways she can make her selection. [2]

Of the 10 varieties, 3 are pink, 5 are red and 2 are yellow. Calculate the number of ways in which her selection of 6 rose bushes could contain

- (ii) no pink rose bush, [1]
- (iii) at least one rose bush of each colour.
- 9 (i) Given that $y = (2x+3)\sqrt{4x-3}$, show that $\frac{dy}{dx}$ can be written in the form $\frac{kx}{\sqrt{4x-3}}$ and state the value of k. [5]

(ii) Hence evaluate
$$\int_{1}^{7} \frac{x}{\sqrt{4x-3}} dx.$$
 [3]

6000 D R 0 E

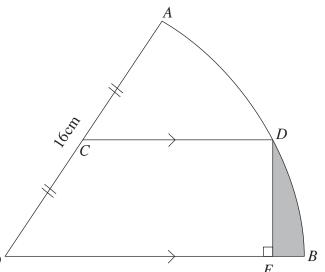
In the diagram, OAB is a sector of a circle, centre O and radius 16 cm, and the length of the arc AB is 19.2 cm. The mid-point of OA is C and the line through C parallel to OB meets the arc AB at D. The perpendicular from D to OB meets OB at E.

(i)	Find angle AOB in radians.	[2]
(ii)	Find the length of <i>DE</i> .	[2]

- (iii) Show that angle *DOE* is approximately 0.485 radians. [2]
- (iv) Find the area of the shaded region.
- 11 A particle, moving in a certain medium with speed $v \,\mathrm{ms}^{-1}$, experiences a resistance to motion of R N. It is believed that R and v are related by the equation $R = kv^{\beta}$, where k and β are constants.

The table shows experimental values of the variables v and R.

v	5	10	15	20	25
R	32	96	180	290	410


(i) Using graph paper, plot lg R against lg v and draw a straight line graph.

Use your graph to estimate

- (ii) the value of k and of β , [5]
- (iii) the speed for which the resistance is 75 N. [2]

4037/2/O/N/03

10

[3]

[4]

12 Answer only **one** of the following two alternatives.

EITHER

Functions f and g are defined for $x \in \mathbb{R}$ by

f:
$$x \mapsto 3x - 2$$
, $x \neq \frac{4}{3}$,
g: $x \mapsto \frac{4}{2-x}$, $x \neq 2$.

(i) Solve the equation gf(x) = 2. [3]

(ii) Determine the number of real roots of the equation $f(x) = g(x)$.	[2]
(iii) Express f^{-1} and g^{-1} in terms of x.	[3]

(iv) Sketch, on a single diagram, the graphs of y = f(x) and $y = f^{-1}(x)$, stating the coordinates of the point of intersection of the two graphs. [3]

OR

(i) Find the value of a and of b for which $1 - x^2 + 6x$ can be expressed in the form $a - (x + b)^2$.	[3]
A function f is defined by $f: x \mapsto 1 - x^2 + 6x$ for the domain $x \ge 4$.	
(ii) Explain why f has an inverse.	[2]
(iii) Find an expression for f^{-1} in terms of <i>x</i> .	
A function g is defined by $g: x \mapsto 1 - x^2 + 6x$ for the domain $2 \le x \le 7$.	
(iv) Find the range of g.	[2]
(v) Sketch the graph of $y = g(x) $ for $2 \le x \le 7$.	[2]

BLANK PAGE

7

BLANK PAGE

8